GBCS Scheme

USN			15EC53
		Fifth Semester B.E. Degree Examination, June/July 2018	
		Verilog HDL	
Tim	e: 3	hrs. Max. M	Aarks: 80
	Λ	ote: Answer any FIVE full questions, choosing one full question from each mo	dule.
		Module-1	
1	a. b.	Explain briefly the typical design flow for design of VLSI circuits. Explain the 4 bit ripple carry counter with block diagram and design hierarchy.	(08 Marks) (08 Marks)
		OR	
2	a. b.	Explain briefly the two different design methodologies. What is an instance? Explain module instantiation with an example.	(08 Marks) (08 Marks)
		Module-2	
3	a.	Explain the following data types in verilog with an example for each: i) Nets ii) Registers iii) Memories iv) Parameters	(08 Marks)
, X	b. (i) Nets ii) Registers iii) Memories iv) Parameters Explain monitoring, stopping and finishing in a simulation and also compiler directions.	
		OR	
	a.	Write a note on following lexical conventions used in verilog: i) Operators ii) Identifiers and keywords	
	b.	iii) Escaped identifiers iv) Strings Explain different methods of connecting ports to external signals.	(08 Marks) (08 Marks)
_		Module-3	
5	a.	Explain the following operators used in verilog with an example: i) Logical ii) Replication iii) Shift iv) Conditional	(08 Marks)
	b.	Write the verilog code and stimulus for gate level 4:1 multiplexer with their logi	(08 Marks)
		Write the gate level description for 4 bit ripple carry full adder.	(06 Marks)
6	a. b.	Define bufif/notif and write gate instantiation of bufif, notif gates.	(04 Marks)
	c.	Define implicit continous assignment delay and net declaration delay with an ex	ample. (06 Marks)
		Module-4	
7	a.	Explain blocking and non-blocking assignments in behavioural description with	an example. (08 Marks)
	b.	Explain structured procedures in behavioural description with example.	(08 Marks)
		OR	
8	a. b.	Explain different types of event based timing control in verilog. Explain with an example the two types of blocks in verilog behavioural descript	(08 Marks) ion.
		Module-5	(08 Marks)
9	a.	Explain the synthesis process with a block diagram.	(08 Marks)
,	b.	Explain the attributes in VHDL with examples.	(08 Marks)
		OR	
10	a. b.	Explain simulate the post fit design implementation in VHDL. Explain different scalar types in VHDL.	(08 Marks) (08 Marks)